A New Route to Tricyclic 2-Pyridone Frameworks via Formation of Bicyclic N-Alkenyl Alkynylamides Followed by Gold-catalyzed Cycloisomerization

Hidetomo Imase and Ken Tanaka*

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588

(Received September 24, 2009; CL-090861; E-mail: tanaka-k@cc.tuat.ac.jp)

A cationic gold(I)/PPh₃ complex catalyzes cycloisomerizations of bicyclic *N*-alkenyl alkynylamides leading to tricyclic 2-pyridone derivatives at room temperature in good yields. The bicyclic *N*-alkenyl alkynylamides are readily prepared starting from commercially available 2-substituted cycloalkanones.

As 2-pyridone frameworks are important core units in biologically active compounds and functional organic materials, their efficient synthesis has been extensively pursued to date. For the synthesis of bicyclic 2-pyridones, transition metal mediated [2+2+2] cycloadditions of diynes with isocyanates (eq 1)² and alkynylisocyanates with alkynes (eq 2)³ are highly efficient and convergent methods.⁴

Recently, we have reported that a cationic gold(I)/PPh₃ complex catalyzes the cycloisomerization of *N*-alkenyl alkynylamides (amide-linked 1,5-enynes) that can be readily prepared starting from the corresponding cycloalkanones leading to 5–6 and 6–6 fused bicyclic 2-pyridones (n=1 and 2, eq 3).^{5–7} In this letter, we describe the synthesis of tricyclic 2-pyridones (pyridoquinolinone derivatives⁸) that cannot be synthesized by [2+2+2] cycloadditions via formation of bicyclic *N*-alkenyl alkynylamides starting from the corresponding 2-substituted cycloalkanones followed by the gold-catalyzed cycloisomerization (eq 4).

We first investigated the synthesis of bicyclic *N*-alkenyl alkynylamides **4** starting from the commercially available 2-substituted cycloalkanones **1**. After screening synthetic routes and optimization of reaction conditions, 1,5-enyne **4aa** was success-

fully prepared starting from ketone 1a in four steps without purification of each intermediate (Table 1, Entry 1). Intermediate azide 2a was prepared via alkylation of ketone 1a with 1-bromo-3-chloropropane followed by treatment with NaN₃. The azide 2a was treated with PPh3 to form the corresponding imine, 10 which reacted with alkynovl chloride 3a to furnish the desired 1,5-enyne 4aa. Various 1,5-enynes 4 were then prepared starting from 2-substituted cycloalkanones 1a-1d by following the above optimized procedure. Both ethoxycarbonyl- (1a and **1b**, Entries 1–6) and phenyl-substituted cycloalkanones (**1d**, Entries 8 and 9) could be transformed to the corresponding 1,5-enynes in fair to good yields, while benzoyl-substituted cyclohexanone 1c was transformed to the corresponding 1,5-enyne 4ca in low yield due to the competitive aza-Wittig reaction in the benzoyl carbonyl group (Entry 7). With respect to alkynoyl chlorides, both aryl- (Entries 1-3 and 6-8) and alkyl-substituted alkynovl chlorides (Entries 4, 5, and 9) could be employed.

Thus obtaining the bicyclic 1,5-enynes 4, these were subjected to the cationic gold(I)/PPh₃ complex-catalyzed cycloisomerizations as summarized in Table 2. The cycloisomerizations of bicyclic 5–6 fused 1,5-enynes smoothly proceeded to give the desired tricyclic 2-pyridones in high yields (Entries 1–6). Not only 5–6 fused 1,5-enynes but also 6–6 fused 1,5-enynes (Entries 7–10) could participate in this reaction, although product yields were moderate and prolonged reaction times were required. With respect to the substituents (R¹) at the bridged carbon atom,

Table 1. Synthesis of bicyclic N-alkenyl alkynylamides 4^a

$$\begin{array}{c}
O \\
 & 1) \text{ NaH} \\
Br(CH_2)_3CI \\
\hline
2) \text{ NaN}_3
\end{array}$$

$$\begin{array}{c}
O \\
O \\
O \\
R^1
\end{array}$$

$$\begin{array}{c}
3) \text{ PPh}_3 \\
Et_3N
\end{array}$$

$$\begin{array}{c}
A^2 \\
A \\
O \\
O \\
R^1
\end{array}$$

Entry	Substrate 1	Substrate 3 ^b	Product 4, Yield ^c /%
1	1a $(n = 1, R^1 = CO_2Et)$	$3a (R^2 = Ph)$	4aa , 35
2	1a $(n = 1, R^1 = CO_2Et)$	3b ($R^2 = 4\text{-MeOC}_6H_4$)	4ab , 36
3	1a $(n = 1, R^1 = CO_2Et)$	$3c (R^2 = 2-ClC_6H_4)$	4ac , 31
4	1a $(n = 1, R^1 = CO_2Et)$	$3d (R^2 = Me)$	4ad , 47
5	1a $(n = 1, R^1 = CO_2Et)$	$3e (R^2 = Cy)$	4ae , 57
6^{d}	1b $(n = 2, R^1 = CO_2Et)$	$3a (R^2 = Ph)$	4ba , 51
7 ^d	$1c (n = 2, R^1 = Bz)$	$3a (R^2 = Ph)$	4ca , 9
8	1d $(n = 2, R^1 = Ph)$	$3a (R^2 = Ph)$	4da , 45
9	1d $(n = 2, R^1 = Ph)$	$3d (R^2 = Me)$	4dd , 27

^aSee Supporting Information for detailed reaction conditions. ⁹ ^bCarboxylic acid chloride **3** were prepared in situ by the reaction of the corresponding carboxylic acid and 1-chloro-*N*,*N*,2-trimethyl-1-propenylamine. ^cIsolated yield. ^d1-Chloro-3-iodopropane was used instead of 1-bromo-3-chloropropane.

Table 2. Gold-catalyzed cycloisomerizations of bicyclic *N*-alkenyl alkynylamides **4**^a

$$R^{2}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

Entry	Substrate 4	Time/h	Product 5, Yield ^b /%
1	4aa $(n = 1, R^1 = CO_2Et, R^2 = Ph)$	5	5aa , 82
2^{c}	4aa $(n = 1, R^1 = CO_2Et, R^2 = Ph)$	5	5aa , 81
3	4ab $(n = 1, R^1 = CO_2Et, R^2 = 4-MeOC_6H_4)$	1	5ab , 87
4	4ac $(n = 1, R^1 = CO_2Et, R^2 = 2\text{-}ClC_6H_4)$	4	5ac , 79
5	4ad $(n = 1, R^1 = CO_2Et, R^2 = Me)$	17	5ad , 71
6	4ae $(n = 1, R^1 = CO_2Et, R^2 = Cy)$	12	5ae , 86
7	4ba $(n = 2, R^1 = CO_2Et, R^2 = Ph)$	17	5ba , 71
8	4ca $(n = 2, R^1 = Bz, R^2 = Ph)$	30	5ca, 51
9	4da $(n = 2, R^1 = Ph, R^2 = Ph)$	15	5da , 64
10	4dd $(n = 2, R^1 = Ph, R^2 = Me)$	36	5dd , 60

^aAuCl(PPh₃)₃ (0.010 mmol), AgBF₄ (0.010 mmol), **4** (0.200 mmol), and (CH₂Cl)₂ (1.0 mL) were used. See Supporting Information in detail.⁹ ^bIsolated yield. ^c(CH₂Cl)₂ (reagent grade) was used.

Scheme 1. Synthesis of tricyclic 2-pyridone **5ec** (See Supporting Information for detailed reaction conditions⁹).

the reactions of ethoxycarbonyl-substituted 1,5-enynes proceeded in higher yields than those of benzoyl- and phenyl-substituted 1,5-enynes (Entry 7 vs. Entries 8 and 9). With respect to the substituents (R²) at the alkyne terminus, the reactions of aryl-substituted 1,5-enynes proceeded at higher reaction rates than those of alkyl-substituted 1,5-enynes (Entries 1, 3, and 4 vs. 5 and 6; Entry 9 vs. 10). Importantly, the present cycloisomerization could be conducted using a reagent grade solvent without erosion of the product yield (Entry 2).

Although elaborate operations are required, tricyclic 2-pyridone **5ec**, bearing a methyl group at the bridged carbon atom, could also be synthesized as shown in Scheme 1. 1,4-Addition of methyl methacrylate to 2-methylcyclopentanone (**1e**) furnished ester **6** following the literature procedure. ¹¹ The ester **6** was transformed into azide **2e** in five steps. The azide **2e** was treated with PPh₃ followed by reaction with alkynoyl chloride **3c** to furnish the desired 1,5-enyne **4ec**. The gold-catalyzed cycloisomerization of **4ec** proceeded to give the desired 2-pyridone **5ec** in high yield.

The cycloisomerization of 1,5-enyne **7** that can be readily prepared from phenylpropiolic acid and 2,3,3-trimethylindolenine in one step leading to tricyclic 2-pyridone **8** was also inves-

tigated. Fortunately, the desired cycloisomerization proceeded at room temperature by using the cationic $gold(I)/PPh_3$ complex (5 mol %) to yield the expected tricyclic 2-pyridone 8 in 52% yield (eq 5).

In conclusion, a new route to tricyclic 2-pyridone derivatives has been developed via formation of bicyclic *N*-alkenyl alkynylamides followed by the gold-catalyzed cycloisomerization. Future work will focus on application of this methodology to the total synthesis of natural products.

This work was supported partly by a Grant-in-Aid for Scientific Research (No. 20675002) from MEXT, Japan.

References and Notes

- For recent reviews, see: a) M. Torres, S. Gil, M. Parra, Curr. Org. Chem.
 2005, 9, 1757. b) I. Nakamura, Y. Yamamoto, Chem. Rev. 2004, 104, 2127. c) J. H. Rigby, Synlett 2000, 1.
- 2 a) K. Tanaka, A. Wada, K. Noguchi, Org. Lett. 2005, 7, 4737. b) Y. Yamamoto, K. Kinpara, T. Saigoku, H. Takagishi, S. Okuda, H. Nishiyama, K. Itoh, J. Am. Chem. Soc. 2005, 127, 605. c) H. A. Duong, M. J. Cross, J. Louie, J. Am. Chem. Soc. 2004, 126, 11438. d) L. V. R. Bonaga, H.-C. Zhang, D. A. Gauthier, I. Reddy, B. E. Maryanoff, Org. Lett. 2003, 5, 4537. e) T. Takahashi, F.-Y. Tsai, Y. Li, H. Wang, Y. Kondo, M. Yamanaka, K. Nakajima, M. Kotora, J. Am. Chem. Soc. 2002, 124, 5059, and references therein.
- 3 R. A. Earl, K. P. C. Vollhardt, J. Org. Chem. 1984, 49, 4786.
- For recent reviews of synthesis of azaheterocycles including 2-pyridones by transition metal mediated [2 + 2 + 2] cycloadditions, see: a) B. Heller, M. Hapke, Chem. Soc. Rev. 2007, 36, 1085. b) P. R. Chopade, J. Louie, Adv. Synth. Catal. 2006, 348, 2307. c) J. A. Varela, C. Saà, Chem. Rev. 2003, 103, 3787.
- a) H. Imase, K. Noguchi, M. Hirano, K. Tanaka, *Org. Lett.* **2008**, *10*, 3563.
 b) H. Imase, T. Suda, Y. Shibata, K. Noguchi, M. Hirano, K. Tanaka, *Org. Lett.* **2009**, *11*, 1805.
- 6 For selected recent examples of cycloisomerizations of 1,5-enynes to form six-membered compounds, see: a) J. Sun, M. P. Conley, L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2006, 128, 9705. b) B. D. Sherry, L. Maus, B. N. Laforteza, F. D. Toste, J. Am. Chem. Soc. 2006, 128, 8132. c) M. Movassaghi, M. D. Hill, J. Am. Chem. Soc. 2006, 128, 4592. d) T. Shibata, Y. Ueno, K. Kanda, Synlett 2006, 411. e) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren, Chem.—Eur. J. 2006, 12, 1677. f) C. M. Grisé, L. Barriault, Org. Lett. 2006, 8, 5905. g) S. Datta, A. Odedra, R.-S. Liu, J. Am. Chem. Soc. 2005, 127, 11606. h) C. Fehr, J. Galindo, Angew. Chem., Int. Ed. 2006, 45, 2901. i) H. Imagawa, T. Iyenaga, M. Nishizawa, Org. Lett. 2005, 7, 451. j) V. Mamane, P. Hannen, A. Fürstner, Chem.—Eur. J. 2004, 10, 4556, and references therein.
- For recent reviews of cycloisomerizations of 1,n-enynes, see: a) V. Michelet, P. Y. Toullec, J.-P. Genêt, Angew. Chem., Int. Ed. 2008, 47, 4268. b) L. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271. c) C. Bruneau, Angew. Chem., Int. Ed. 2005, 44, 2328. d) L. Añorbe, G. Domínguez, J. Pérez-Castells, Chem.—Eur. J. 2004, 10, 4938.
- a) A. Padwa, A. C. Flick, H. Lee, Org. Lett. 2005, 7, 2925. b) A. Padwa,
 S. R. Harring, M. A. Semones, J. Org. Chem. 1998, 63, 44. c) C. H.
 Heathcock, M. H. Norman, D. A. Dickman, J. Org. Chem. 1990, 55,
 798. d) D. A. Dickman, C. H. Heathcock, J. Am. Chem. Soc. 1989,
 111, 1528.
- 9 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.
- 10 B. J. Neubert, B. B. Snider, *Org. Lett.* **2003**, *5*, 765.
- 11 H. O. House, W. L. Roelofs, B. M. Trost, J. Org. Chem. 1966, 31, 646.